首页 第二章多级汽轮机

第二章多级汽轮机

举报
开通vip

第二章多级汽轮机null第二章 多级汽轮机第二章 多级汽轮机 第一节 多级汽轮机的优越性及其特点 第二节 进汽阻力损失和排气阻力损失 第三节 汽轮机及其装置的评价指标 第四节 轴封及其系统 第五节 多级汽轮机的轴向推力及其平衡 第六节 单排汽口凝汽式汽轮机的极限功率第二章 多级汽轮机§2.1 多级汽轮机的优越性及其特点§2.1 多级汽轮机的优越性及其特点一、多级汽轮机的应用增大容量和提高机组效率要求蒸汽在汽轮机中有较大的比焓降。单级汽轮机受叶轮和叶片材料强度的限制,所能承担的焓降有限。在最佳速比下,单级焓降越...

第二章多级汽轮机
null第二章 多级汽轮机第二章 多级汽轮机 第一节 多级汽轮机的优越性及其特点 第二节 进汽阻力损失和排气阻力损失 第三节 汽轮机及其装置的 评价 LEC评价法下载LEC评价法下载评价量规免费下载学院评价表文档下载学院评价表文档下载 指标 第四节 轴封及其系统 第五节 多级汽轮机的轴向推力及其平衡 第六节 单排汽口凝汽式汽轮机的极限功率第二章 多级汽轮机§2.1 多级汽轮机的优越性及其特点§2.1 多级汽轮机的优越性及其特点一、多级汽轮机的应用增大容量和提高机组效率要求蒸汽在汽轮机中有较大的比焓降。单级汽轮机受叶轮和叶片材料强度的限制,所能承担的焓降有限。在最佳速比下,单级焓降越大,圆周速度越大?现代大容量汽轮机都采用多级设计!东方汽轮机厂N300-16.7/537/537-4型汽轮机 总共28级,其中: 高压缸:1个单列调节级+9个冲动压力级 中压缸:6个冲动压力级 低压缸:2 ×6个冲动压力级东方汽轮机厂生产的N300—16.7/537/537—4型汽轮机纵剖面图 null§2.1 多级汽轮机的优越性及其特点上海汽轮机厂引进型N300-16.7/538/538型汽轮机 全机共由35级组成,其中 高压缸:1个单列调节级+11个反动压力级 中压缸:9个反动压力级 低压缸:2×7个反动压力级上海汽轮机厂生产的反动式N300—16.7/538/538型汽轮机纵剖面图 二、 优点及存在的问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 (一)优点(1)多级汽轮机循环热效率大大提高(2)多级汽轮机相对内效率明显提高设计工况下,每级都在最佳速 比附近工作多数级余速可全部或部分利用喷嘴和动叶的出口高度增大, 减小了叶高损失存在重热现象蒸汽参数提高,实现抽汽回热和 中间再热。null§2.1 多级汽轮机的优越性及其特点此外,多级汽轮机的单位功率造价、材料消耗和占地面积都比 单级汽轮机明显减小,机组容量越大减小越显著,大大节省了 投资。(二)存在的问题 (1)增加了一些附加损失; (2)增加了机组的长度和质量;(3)高中压缸前面若干级的工作温度高,对零部件的 金属材料要求提高了;(4)级数增多,零部件增多,结构复杂,制造成本高。null二、重热现象和重热系数重热现象---在水蒸气的h-s图上等压线是沿着比熵增大的方向逐 渐扩张的,也就是说,等压线之间的理想比焓降随着比熵的增大 而增大。这样上一级的损失(客观存在)造成比熵的增大将使后面 级的理想比焓降增大,即上一级损失中的一小部分可以在以后各 级中得到利用,这种现象称为多级汽轮机的重热现象。 概念:重热现象的解释将蒸汽作为理想气体:第一级没有损失时:第二级的初始蒸汽参数为 。§2.1 多级汽轮机的优越性及其特点null§2.1 多级汽轮机的优越性及其特点第一级总是有损失存在的,因此第一级排汽的比熵和温度将增加,实际第二级初始蒸汽参数在前一级有损失的情况下,本级进口温度升高,级的理想比焓降 稍有增大,这就是重热现象。null 重热系数重热系数----各级理想焓降之和大于 整机理想焓降的增量与整机理想焓降 的比。重热系数§2.1 多级汽轮机的优越性及其特点式中 即为多级汽轮机 的重热量,表示前面级的损失中被后面 级利用了的小部分热量。为讨论方便,假设汽轮机中各级的相 对内效率 都相等,则有null另一方面,整个多级汽轮机的相对内效率为:可得:因此§2.1 多级汽轮机的优越性及其特点重获热量使整个汽轮机的相对内效率 大于各级的平均 内效率也就是 些等式相加,可得:null§2.1 多级汽轮机的优越性及其特点(1)由于重热现象的存在,多级汽轮机中前一级的损失,可以小部 分在后面级中得到重新利用,使多级汽轮机全机的效率要比各级 平均的效率好一些。(2)不应从上式中简单地得出α越大,全机效率越高的结论,这是因为α的提高是在各级存在损失,各级效率降低的前提下实现的,重热现象的存在仅仅是使多级汽轮机能回收其损失的一部分而已。讨论(3)提高汽轮机效率的根本途径是提高各级的相对内效率。级的能量损失增大,重热系数增加,重热量是增加的损失中很小一部分 三、 多级汽轮机各级段的工作特点三、 多级汽轮机各级段的工作特点§2.1 多级汽轮机的优越性及其特点 (一)高压段 蒸汽特性:高压、高温,比容小,蒸汽容积流量小。结构特点:喷嘴出口汽流方向角αl较小,以保证叶片高度。一般情况下,冲动式汽轮机的αl= 11°~14°,反动式汽轮机 的αl= 14°~20°。 气动特性:各级比焓降不大,比焓降的变化也不大。在冲动汽轮机的高压段,级的反动度一般不大。级内损失特点:可能存在的级内损失有:轮周损失、叶高损失、扇形损失、漏 汽损失、叶轮摩擦损失、部分进汽损失等。高压段各级的效率相对较低。叶高损失、漏汽损失、叶轮摩擦损失、部分进汽损失相对较大null§2.1 多级汽轮机的优越性及其特点低压段蒸汽特性:低压、低温,末几级处于湿汽区,比容大,蒸汽容积 流量大。结构特点:喷嘴出口汽流方向角αl大,避免叶高过大。气动特性:级内损失特点:可能存在的级内损失有:轮周损失、叶高损失、扇形损失、漏 汽损失、叶轮摩擦损失、湿汽损失等。余速损失大,但一般可被下级利用,叶轮摩擦损失、漏汽损失、叶高损失很小,主要是湿气损失大。理想比焓降较大,且相应增加较快叶高大,末两级叶高扩张很快级的反动度明显增大效率介于高压级和中压级之间。null§2.1 多级汽轮机的优越性及其特点 (三)中压段 蒸汽特性:中压、高温,中比容,蒸汽容积流量中等。结构特点:气动特性:级的反动度介于高压缸与低压缸之间,且逐渐增大。级内损失特点:中等叶高,各级叶片高度沿流动方向逐渐增大。可能存在的级内损失有:轮周损失、叶高损失、扇形损失、漏 汽损失、叶轮摩擦损失等。叶高损失较小;一般为全周进汽,没有部分进汽损失,中压级 漏汽损失较小,叶轮摩擦损失也较小,也没有湿汽损失。效率要比高压级和低压级都高。null多级汽轮机各缸工作特点小结§2.1 多级汽轮机的优越性及其特点null§2.1 多级汽轮机的优越性及其特点null1.描述多级汽轮机的性能与特点。 2.解释重热现象和重热系数。§2.1 多级汽轮机的优越性及其特点null一、多级汽轮机蒸汽流程§2.2 进汽阻力损失和排汽阻力损失null主要原因是汽流的沿程摩擦、转向和涡流损失三方面。蒸汽在汽轮机本体之外流道中的流动必然产生损失,将使机组的效 率下降。这些损失归结为进汽损失和排汽损失两部分。二、进汽阻力损失由于通过这些部件时蒸汽的散热损失可忽略,因此蒸汽通过汽阀 的热力过程是一个节流过程,即蒸汽通过进汽部分到达调节级喷 嘴前后虽有压力降落,但比焓值不变。蒸汽进入汽轮机工作级前必须先经过主汽阀、调节阀和蒸汽室。蒸汽通过这些部件时就会产生压力降,主汽阀和调节阀最为严重。§2.2 进汽阻力损失和排汽阻力损失null§2.2 进汽阻力损失和排汽阻力损失汽轮机进汽阻力损失:进汽机构阻力使 进入汽轮机第一级的蒸汽节流降压,从 而引起的理想比焓降损失。该损失的表示方法:通常用压损占新汽压力的百分数来表示对高压进汽部分压损对于再热管道及再热器,压损对于中低压缸连通管,压损null§2.2 进汽阻力损失和排汽阻力损失损失的大小取决于汽流速度控制阀门与管道中蒸汽流速 ≤40~60m/s主汽门及调门 的气动特性优化阀芯型线和汽室形状,采用带扩压管的阀门。null§2.2 进汽阻力损失和排汽阻力损失三、 排汽阻力损失排汽在排汽管中流动时,由于摩擦,涡 流,转向等阻力作用而有压力下降,这 部分没做功的压降损失,称为汽轮机的 排汽阻力损失。凝汽式机排汽管中汽流速度cex≤100 ~120m/s ,背压机cex≤40~60m/s, 排汽管阻力系数λ=0.05~0.1(下置式 凝汽器).减小排汽阻力损失方法:通过扩压把排汽动能转化为静压,以补偿排汽管中的压力损失。null§2.2 进汽阻力损失和排汽阻力损失排汽部分通常做成蜗壳扩散式,尽可能使排汽的余速动能转变为 压力能,补偿流动产生的损失,并内装导流环,使乏汽均匀地布 满整个排汽通道,保持排汽畅通。由于排气管中扩压器的位置不 同,所以有不同的排气管形式,如图表示了两种不同形式的排气管。排汽管评价指标:能量损失系数ξex和静压恢复系数ηexnull§2.2 进汽阻力损失和排汽阻力损失☆静压恢复系数 :排汽通道出口、进口静压差与末级动叶出口 蒸汽动能之比。 即式(a):☆能量损失系数 :排汽通道总损失与末级动叶出口蒸汽动能 之比。即式(b):式中:△蒸汽在排汽管的总损失,进入凝汽器的蒸汽动能和排汽 通道的流动压力损失。即null(2)部分汽流动能转化为压力能。减少能量损失系数及提高静压恢复系数是排汽管设计目标。扩压回收压力不足以弥补沿程 阻力损失,应尽量避免这种情 况出现。§2.2 进汽阻力损失和排汽阻力损失回收压头正好补偿流动损失压头;讨论:(1)(3)null§2.2 进汽阻力损失和排汽阻力损失(作业)1.汽轮机高、中、低压缸的主要损失有哪几种? 2.解释进汽阻力损失和排气阻力损失,并在h-s 图上表示出来。§ 2.3 汽轮机及其装置的评价指标§ 2.3 汽轮机及其装置的评价指标汽轮机性能 评价指标以整机理想焓降为基础以单位质量蒸汽在热力循环中所吸收热 量为基础一、 汽轮机的相对内效率以下以无回热抽汽、无再热、无前后端轴封漏汽和门杆漏汽的纯凝汽式机组说明相关效率的定义式。汽轮机的相对内效率----有效比焓降与理想比焓降之比相应的,汽轮机的内功率null即:汽轮发电机组相对电效率即:§ 2.3 汽轮机及其装置的评价指标null汽轮机的绝对内效率----全机实际比焓降与整个循环中加给1kg蒸汽的热量之比§ 2.3 汽轮机及其装置的评价指标二、 汽轮机的绝对内效率只适用于本课所定义特殊机组 适用于所有机组 适用于所有机组 null汽耗率----每生产1kw·h电能所消耗的蒸汽量热耗率----每生产1kw·h电能所消耗的热量§ 2.3 汽轮机及其装置的评价指标机组发出1KW·h电量所消耗的标煤量( 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 煤g/KW·h)。(1kg标准煤发热量为7000Kcal)。发电煤耗、供电煤耗。三、 汽耗率四、 热耗率 五、煤耗率适用于所有机组 null§ 2.3 汽轮机及其装置的评价指标讨论:(1)相对效率是衡量某个能量转换环节设计的完善程度的指标。(2)绝对电效率和热耗率是衡量汽轮发电机组经济性的主要指标。(3)汽耗率由于和机组的初终参数有关,因此只能用于比较同类型同参数机组的运行管理水平。(4)汽轮发电机组的绝对电效率和热耗率由于没有考虑锅炉效率、管道效率和厂用电等,因此高于机组电效率和热耗率。(5)未扣除厂用电的煤耗率称为发电煤耗,扣除厂用电的称为供电煤耗,因此供电煤耗总是高于发电煤耗。null§ 2.3 汽轮机及其装置的评价指标(作业与思考)1.解释汽轮机的相对内效率、汽轮发电机组的相对内效率、汽轮机的绝对内效率、绝对电效率。 2.解释汽耗率及热耗率,并写出定义式。§2.4 轴封及其系统§2.4 轴封及其系统为什么设置汽封?汽轮机是高速旋转的机械。在汽缸、隔板等静子部分与主轴、叶 轮(包括动叶)等转子部分之间,必须有一定的轴向和径向间隙 ,以免机组在工作时动静部件之间发生摩擦。既然有间隙存在, 间隙前后又存在压差,就可能漏汽(气),为了减少蒸汽的泄漏 和防止空气漏入,需要有汽封装置。汽封按用途分类:隔板汽封叶根及叶顶汽封轴端汽封 (轴封)隔板内圆处的汽封,用来阻碍蒸汽绕过喷嘴而引起能 量损失并使叶轮上的轴向推力增大。动叶栅顶部和根部处的汽封,通称通流部分汽封, 用来阻碍蒸汽从动叶栅两端逸散致使做功能力降低。转子穿过汽缸两端处的汽封,高压轴封防止蒸汽漏出汽缸,造成 工质损失,恶化运行环境,并且加热轴颈或冲进轴承使润滑油质 劣化;低压轴封用来防止空气漏入汽缸,破坏凝汽器正常工作。null§2.4 轴封及其系统主要形式:齿形轴封、蜂窝式轴封等。一、 齿形轴封齿形轴封分为高低齿轴封(曲径轴封)和平齿轴封(光轴轴封)两种。在汽轮机的高压段采用曲径轴封,在低压段采用光轴轴封。工作原理:当漏汽漏过汽封时,每通过一个汽封片所形成 的孔口,就产生一次节流作用,即蒸汽的压力 就降低一次,每一汽室中的压力都低于前一汽 室中的压力,每一汽封片前后压差之和就等于 汽封前后的总压差P0-Pg。由于孔口的漏汽面 积是Ap=πdpδ定值(dp是汽封片处轴的直径 ,δ是汽封间隙),因此在给定的总压差下, 如果汽封片数越多,则每一汽封片两侧的压力 差就越小,漏汽量也就越少。 null蒸汽在汽封中的流动当作绝热等焓过程。蒸汽在流经汽封片时节流加速,然后在腔室中产生涡流,将汽流动能转变为热能。随压力降低,蒸汽比容增大,故对相同 结构的汽封,汽流速度和焓降 是逐级增大。又因蒸汽在汽封 中膨胀时逐级焓值变小、音速 降低、流速增加,汽封孔口 只能看作无斜切部分的渐缩喷 嘴,因此在汽封中只可能出 现临界流动,且只能在最后 一个汽封片处出现。 §2.4 轴封及其系统蒸汽在汽封中的流动过程:芬诺曲线(等流量线) 等焓线null漏汽量计算分亚临界和超临界两种工况亚临界工况的漏汽量采用不可压缩流动方程,汽流通过某一片孔口的流速为 对应的流量为 由于等焓线上压力与密度之商为常数,从而求得腔室压力与前后压差的关系§2.4 轴封及其系统漏汽量计算 : 亚临界:最后一片孔口处流速未达临界速度null§2.4 轴封及其系统Z片轴封相加 改写为积分式:亚临界时通过汽封的蒸汽量null临界 临界工况时,将最后一个孔口当作喷嘴。由临界流量计算公式得通过最后一个孔口的漏汽量为因最后一片轴封孔口前均为亚临界,由前面亚临界漏汽量计算公式求得末道轴封孔口前压力§2.4 轴封及其系统null判定是否临界的准则 因而,最后一片中流速达临界时漏汽量3 轴封孔口流量系数§2.4 轴封及其系统蒸汽通过轴封孔口的流速是用渐缩喷嘴的流速公式计算的,其与实际有一定的差异,由实验求取流量系数 ,其与轴封齿的形状及几何参数有关,右图可查得:讨论null4光轴轴封漏汽量修正系数 与曲径轴封的区别是蒸汽进入下一空口前还有一定的初速,故漏汽量增大,其计算结果只需在曲径轴封的计算结果上乘一修正系数 , 可由光轴轴封尺寸 和轴封片数z查得,图:§2.4 轴封及其系统(1)齿进汽侧不应作成圆弧状或斜面状,应保持齿的尖锐边缘 (2)齿的尖锐边缘在运行中会因为摩擦而钝化,流量系数会增大 5基本计算公式 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 与统一②计算时必须先判别在轴封段的最末一片 中是否达到临界速度。公式缺陷:①临界点计算结果不一致;null§2.4 轴封及其系统6计算曲径轴封的漏汽量单一表达式轴封漏汽量比:null二、 轴封系统§2.4 轴封及其系统作用:在任何运行工况下保证蒸汽不外泄、空气不内漏,同时回收 泄漏蒸汽的热能(轴封加热器)和组织汽流冷却转子的轴端。端轴封和与它相连的管道和附属设备组成:轴封系统由轴封、供汽母管及均压箱、轴封调节器、轴封加 热器和轴封抽汽器等组成。轴封系统的型式有外供汽式和自密封式 两种,不同制造厂采用不同的轴封系统和轴封汽流组织方式。特点:轴封分成多段多室,与大气环境接近的腔室的压力由抽汽器 或风机维持略低于大气压力,紧邻的腔室压力由压力调节器维持略 高于大气压力,从而保证蒸汽不外泄、空气不内漏。null 轴封主要由三段二室组成。高负荷运行时,低压轴封的供汽来自 于高压轴封的漏汽,高压漏汽经喷水减温后进入低压轴封;启动 或低负荷时,轴封汽由外部提供。 优点:系统简单; 缺点:不能充分冷却高、中压缸高温轴端。2 外供汽式轴封系统高、中缸高温端轴封由多(大于3)段多室组成,部分漏汽被引至 低压加热器。轴封的供汽来自于辅助蒸汽系统。 优点:低温辅助蒸汽对高、中压段高温轴端起到冷却作用; 缺点:系统复杂。§2.4 轴封及其系统三、轴封系统的特点1自密封式轴封系统null4、防止空气漏入真空部分---在低压端轴封次外腔室通入比大气压力稍高的蒸汽,沿着主轴向背离汽缸方向流动,以阻止外界空气流入。 §2.4 轴封及其系统 1、轴封汽的利用---将漏汽从轴封中间腔室引出加以利用或回收 漏汽(含空气)混合物的热量以加热凝结水(多于两个腔室时); 2、低压低温汽源的利用---高压缸两端与主轴承靠近,为防止传出 高温蒸汽使轴承超温,常向高压轴封供低压低温蒸汽(非自密封系 统) ;或在启动及低负荷时,向轴封供备用蒸汽(各种系统)。3、防止蒸汽由端轴封漏入大气---防止蒸汽漏入轴承使油质恶化、 车间湿度增大及汽水损失,通常在高低压端轴封最外腔室人为地 造成一个比大气压力稍低的压力,将漏出的蒸汽和漏入的空气一 起抽出,经冷却后排入大气;null§2.4 轴封及其系统(作业与思考)1.简述轴封概念、作用及主要形式。 2.简述轴封系统的组成及作用。 3.轴封漏汽量在亚临界和超临界两种工况时的计算公式。§2.5 多级汽轮机的轴向推力及其平衡 一 轴向推力§2.5 多级汽轮机的轴向推力及其平衡 轴流式汽轮机中,高压蒸汽由一端进入,低压蒸汽由另一端 流出,整体来看,蒸汽对转子施加了一个由高压端指向低压端的 轴向力,使转子存在一个向低压端移动的趋势,这个力就称为转 子的轴向推力。轴向推力由推力轴承承担。计算轴向推力,为推力轴承的设计提供依椐。对轴向推力采取平衡 措施 《全国民用建筑工程设计技术措施》规划•建筑•景观全国民用建筑工程设计技术措施》规划•建筑•景观软件质量保证措施下载工地伤害及预防措施下载关于贯彻落实的具体措施 ,平衡掉部分轴向推力,减少推力 轴承的设计制造难度。例如对高压反动式机组,它的推力可高达1.96~2.94MN二 冲动式汽轮机的轴向推力 转子上的轴向推力是各级轴向推力的总合,包括作用在各级动叶上的轴向推力、作用在叶轮面上的轴向推力和作用在转子凸肩上的轴向推力三部分。null 动叶上的轴向推力是由动叶前后的静压差和汽流在动叶中轴向分速度的改变所产生的 由于轴向分速度变化很小,上式可写§2.5 多级汽轮机的轴向推力及其平衡速度级:计算两列动叶受力之和部分进汽级:乘上部分进汽度enull§2.5 多级汽轮机的轴向推力及其平衡叶轮上的轴向力决定于叶轮两侧的压差 和轮盘面积。由于轮盘面积很大,故轮面上的轴向推 力也很大。为减小此项推力,常在轮盘 面上开设平衡孔,以减小轮盘两侧的压 差。 作用在叶轮轮面上的轴向推力 可写成 null§2.5 多级汽轮机的轴向推力及其平衡漏汽流动情况可归纳为:如果叶轮两侧的轮毂直径相同,即d1=d2=d,则上式可简化为 定义:叶轮反动度叶轮反动度的确定需要进行漏汽量计算(不进汽的动叶)null§2.5 多级汽轮机的轴向推力及其平衡在汽轮机设计时,应尽量使动叶根部不吸不漏或动叶根部稍有蒸汽漏过平衡孔。常取0.4null§2.5 多级汽轮机的轴向推力及其平衡动叶根部漏汽量 ----按不可压缩流体流量计算公式计算式中 为抽气效应产生的压差,与间隙、叶根盖度的大小及圆周速度有关与间隙大小有关null§2.5 多级汽轮机的轴向推力及其平衡泵浦效应----高速旋转的叶轮带动周围蒸汽旋转运动,离心力使 部分蒸汽产生指向叶根的径向运动,叶轮和叶根间隙两侧增加一 压差 ,其效应相当于增大腔室中的压力。泵浦效应的大小可 由泵浦效应反动度 表示一般情况从而有因此:与叶根处最小轴向间隙有关null§2.5 多级汽轮机的轴向推力及其平衡通过流量平衡求得 进而可确定 3 作用轴的凸肩上的轴向推力先算出凸肩上受压面积和其上的压力,再算出总的向前与向后的 推力差值即可。通常该力较小。 三 反动式汽轮机的轴向推力①作用在叶片上的轴向推力;②作用在轮鼓锥形面上的轴向推力;③作用在转子阶梯上的轴向推力。null平衡活塞法----在转子通流部分的对侧,加大高压外轴封的直径,以产生相反方向的轴向推力。相反流动布置法----将蒸汽在汽轮机两汽缸或两部分内的流动安排成相反的方向,使其产生相反的轴向推力,相互平衡。冲动式为主的汽轮机,因叶轮两侧的压差较小,通常采用高、中压缸对置,低压缸双分流布置基本上平衡轴向推力,其余部分由推力轴承来承担;对反动式机组,高、中压缸转子采用鼓式结构,减小叶轮的轴向推力,除采用高、中压对置低压缸双分流布置外,还在高、中压缸转子上增设平衡活塞,减小转子上的净轴向推力。§2.5 多级汽轮机的轴向推力及其平衡四 轴向推力的平衡null§2.5 多级汽轮机的轴向推力及其平衡(作业)1.冲动式汽轮机和反动式汽轮机轴向推力的组成。 2什么叫抽汽效应什么叫泵浦效应,叶根处轴向间隙两侧的压差如何确定。 3.轴向推力的平衡方法。§2.6 单排汽口凝汽式汽轮机的极限功率一、 极限功率的概念与计算极限功率---在一定的初终参数和转速下,单排汽口凝汽式汽轮机所能发出的最大功率。回热抽汽凝汽式汽轮机组的发电极限功率为式中, 为通过汽轮机末级的最大流量,m 为回热抽汽式比纯凝汽式增大的倍数,对中小型机组 哈尔滨汽轮机厂制造的600MW汽轮机组m=1.362。而影响极限功率的主要因素是末级蒸汽流量 ,可用下式表示: 一般取 ;末级余速c2=205~300m/s范围内;比容 决定于末级排汽压力,降低凝结器真空可使比容减小, 增大,极限功率增大,循环热效率降低。因此,末级流量取决于排汽面积。§2.6 单排汽口凝汽式汽轮机的极限功率null§2.6 单排汽口凝汽式汽轮机的极限功率作业: 1.极限功率的概念。 2.讨论提高单机最大功率的途径。末级流量变化成 则极限功率 null光轴轴封及修正系数 (a)光轴轴封示意图 (b)光轴轴封校正系数 §2.4 轴封及其系统null§2.4 轴封及其系统null§2.4 轴封及其系统null§2.4 轴封及其系统自密封时汽封内蒸汽流向nullnull§2.4 轴封及其系统null东方汽轮机厂生产的N300—16.7/537/537—4型汽轮机纵剖面图 nullnullnullnullnullnull位置:主轴穿出汽缸处的汽封作用:减少蒸汽自缸内向缸外漏或防止空气漏入汽缸?高压内轴封高压外轴封123外界大气汽缸内部 ?null蜂窝式轴封齿形轴封null高压转子轴封段null(a)先扩压后转向 (b)先转向后扩压
本文档为【第二章多级汽轮机】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_631559
暂无简介~
格式:ppt
大小:6MB
软件:PowerPoint
页数:0
分类:生产制造
上传时间:2010-12-13
浏览量:25