下载
加入VIP
  • 专属下载券
  • 上传内容扩展
  • 资料优先审核
  • 免费资料无限下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 Statistical Learning Theory - Vapnik

Statistical Learning Theory - Vapnik.pdf

Statistical Learning Theory - V…

rootxue
2010-11-07 0人阅读 举报 0 0 0 暂无简介

简介:本文档为《Statistical Learning Theory - Vapnikpdf》,可适用于IT/计算机领域

soondengStampAdaptiveandLearningSystemsforSignalProcessing,Communications,andControlEdto~:SimonHuykinWerbosTHEROOTSOFBACKPROPAGATION:FromOrderedDerivativestoNeuralNetworksandpoliticalForecastingKrshcKanellakopoulos,andKokotovic:NONLINEARANDADAPTIVECONTROLDESIGNNiluasandShaoSIGNALPROCESSINGWITHALPHASTABLEDISTRIBUTIONSANDAPPLICATIONSDiamantarasandKungPRINCIPALCOMPONENTNEURALNETWORKS:THEORYANDAPPLICATIONSTaoandKokotovic:ADAPTIVECONTROLOFSYSTEMSWITHACTUATORANDSENSORNONLINEARITIESTsoukalasFUZZYANDNEURALAPPROACHESINENGINEERINGHrycejNEUROCONTROL:TOWARDSANINDUSTRIALCONTROLMETHODOLOGYBeckemanADAPTIVECOOPERATIVESYSTEMSCherkasskyandMuherLEARNINGFROMDATA:CONCEPTS,THEORY,ANDMETHODSpassistoandBurgessSTABILITYANALYSISOFDISCRETEEVENTSYSTEMSSinchez~eiiaandSznaierROBUSTSYSTEMSTHEORYANDAPPLICATIONSVapnikSTATISTICALLEARNINGTHEORYStatisticalLearningTheoryAWtLEYINfERSCIENCEPUBLICATfONJOHNWLLfYSONS,LNC,NEWYORKCCilCHESTERjWEfNHEIMIBRISBANEjStNGAPOREITORONTOPageivDisclaimer:ThsbookcontainscharacterswithchacnticsWhenthecharacterscanberepresentedusingtheIScharacterset(http,netLibrarywillrepresentthemastheyappearintheorignaltext,andmostcomputerswillbeabletoshowthefullcharacterscorrectlyInordertokeepthetextsearchableandreadableonmostcomputers,characterswithhacriticsthatarenotpartoftheISlistwillberepresentedwithouttheirchacriticalmarksThsbookisprintedonacidfieepaper'CopynghtObyJohnWileySons,IncAllrightsreservedpublishedsimultaneouslyinCanadaNopartofth~spublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyanymeans,electronic,mechanical,photocopyng,recordmg,scanningorotherwise,exceptaspermittedunderSectionsoroftheUnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthepublisher,orauthorizahonthroughpaymentoftheappropriatepercopyfeetotheCopynghtClearanceCenter,RosewoodDrive,Danvers,MA,(),fax()RequeststothepublisherforpermissionshouldbeaddressedtothepermissionsDepartment,JohnWileySons,Inc,ThrdAvenue,NewYork,NY,(),fax(),EMail:pERMREQWILEYCOMLibrmyofCongressCataloginginPublieutionData:Vapnik,VlahrNaurnovichStatisticallearningtheoryVladmirNVapnikpcm(Adaptiveandlearningsystemsforsignalprocessing,communications,andcontrol)IncludesbibliographcalreferencesandindexISBN(cloth:alkpaper)ComputationallearningtheoryITitleSeriesQVdcCIPprintedintheUnitedStatesofAmericaPagevInmemoryofmyfatherPagevi~CONTENTSPrefaceIntroduction:TheProhlen~ofInductionandStatidicalInferenceILearningParadigminStatisticsTwoApproachestoStatisticalInferenceParticular(I)arametncInference)andGeneral(NonparametncInference)TheParadigmCreatedbytheParametricApproachShortcomingoftheParametricParadigmAftertheClassicalParahgmTheRenassanceTheGeneralizationoftheGl~venkoCantelllKolmogorovTheoryTheStructuralR~skM~nimizationPnncipleTheManPnncipleofInferencefromaSmdSampleSlzeWhatThlsBookisAboutITheoryofLearningandGeneralizationTwoApproachestotheLeamlngProblemIGeneralModelofLearningfromExamplesTheProblemofhfinimizlngtheRiskFunchondfromEmpincdDataTheProblemofPatternRecognitionTheProblemofRegressionEstimationProblemofInterpretingResultsofIndirectMeasuringTheProblemofEensityEstimatlon(theFisherWaldSetting)InductionPrinciplesforMinimizingtheRlskFunctionalontheBasisofEmpiricalDataClassicalMethodsforSolvingtheFunctionEstimationProblemsIdentlficatlonofStochasticObjectsEst~mationoftheDensitiesandConditionalDensitiesProblemofDens~tyEst~mationDlrectSettingProblemofCondihanalProbabllltyEst~mahonProblemofConditionalDens~tyEstimationTheProblemofSolvinganApproximatelyDeterminedIntegralEquationIGhvenkoCanteltiTheoremConvergenceinProbabilityandAlmostSureConvergenceGhvenkoCantelThealemThreeImportantStatist~calLawsnlPosedProblemsTheStructureoftheLearnlngTheoryAppendixtoChapterMethodsforSolvingIPosedProblemsAlITheProblemofSolvlnganOperatorEquationAProblemsWellPased~nTlkhanovsSenseAlTheRegulx~zationMethodAlIdeaofRegularizationMethodAManTheoremsabouttheRegulxizationMethodEstimationoftheProbabilityMeasureandProblemofLemingIPrabab~l~lyModelofaRandomExperimentTheBas~cProblemofStahshcsTheBasicProblemsofProbabilityandStatisticsUniformConvergenceofProbabilityMeasureEst~matesCnnrl~i~nnsfortheTTn~formCnmr~rgenreofEstlrnatesintheTTnknnwnPrnhabllltyMeasureStructureofD~stnbut~anFunctionEstlmatarthatProvldesUniformConvergencePmilalUniformConvergenceandGeneralizationofGlivenkoCantelliTheoremDefinitionofPartialUniformConvergenceGeneralizationoftheGlivenkoCantelliProblemMmimizingtheRiskFunctionalUndertheConditionofUniformConvergenceofProbabilityMeasureEstimatesIvnimizingtheRiskFunctionalundertheConditionofPKtialUniformConvergenceofProbabilityMeasureEshmatesRemarksaboutModesofConvergenceoftheProbabilityMeasureEstimatesandStatementsoftheLearnrigProblemConditionsforConsistencyofEmplncalR~skMinimizahonPrincipleClassicalDefinitionofConsistencyDefinitionofStnct(Nontrivial)ConsistencyDefinltlonofStrictConslstencyforthePatternRecagnltionandtheRegress~onEstimationProblemsDefinltlonofStrictConslstencyfortheDensityEstlmat~anProblemEmpiricalProcessesRemarkontheLawofLxgeNumbersandItsGeneralizationTheKeyTheoremofLeamingTheory(TheoremaboutEquivalence)ProofoftheKeyThearemStnctCans~stencyaftheMax~mumL~kel~haodMethodNecessacyandSufficientConditionsforUniformConvergenceofFrequenciestotheirProbabilitiesThreeCasesofUniformConvergenceConditionsofUniformConvergenceintheSimplestModelEntropyofaSetofFunctionsThearemaboutUmformTwoS~dedConvergenceNecessaryandSufficlentCandihonsfarUmformConvergenceofMeanstotheirExpectationsforaSetofRealValuedBoundedFunctionsEntropyofaSetofRealValuedFunctionsTheoremaboutUniformTwoSidedConvergenceNecessaryandSufficlentConditionsfarUmformConvergenceofMeanstothelrExpectationsforSetsofUnboundedFunctionsProofofTheoremKantiProblemofDemarcabanandPopper'sTheoryofNonfalsiflabil~tyITheoremsaboutNonfalsiflabil~tyICaseofCompleteNonfdstfiab~lttyTheoremaboutParbdNonfalstfiabtl~tyThearemaboutPatenhalNanfals$flabtl$tyConQtoniforOneSjdedUrnformConvergenceandConstitencgoftheEmplncdPdskNnlm$rahonPnnapleThreeUlestonesInLeamlngTheoryBaundiantheRtskforIndrcatorLossFunct~oniBoundsfortheStmplestModelPess$mtst$cCaseITheSimplestModelBoundsforthcSimplestModelOpbmtsbcCaseBoundsfortheStmplestModelGeneralCaieTheBastcIneyualtheiPesstmflstflcCaseProofofTheoremITheEastcLemmaProofofBaxcLemmaTheIdeaofProvtngTheoremProofofTheoremBaxcInequallbesGeneralCaiePraafofThearemManNancontmct~reBoundsVCDtmenstonTheStmctureoftheGrowthFunchonCanitructtveDlitrtbutlonFreeBaundionGeneralnabonAb~l~tySolubonofGeneraltredGhuenkoCantell,ProblemPraafafTheoremExampleoftheVCDlmenslanaftheDifferentSetsofFuncboniRemarksabouttheBoundsontheGeneral~zahonAb~lttyofLearntngMach~nesBoundonDevtahonofFrequenctesInTwoHalfSamplesAppendrxtoChapterLowerBoundsantheRlskoftheERMPnnclpleAITwoStrategleimStahsttcalInferenceAMtntmaxLcssStrategyforLeam~ngProblemsAUpperBoundsontheMammalLossfortheEmptrtcalRtskMtn$m~zationPrincipleACptlmlibcCaseAPesslmtsttcCaseALowerBoundfortheMtntmaxLossStrategymtheOpbmtsbcCaseALowerBoundfarMmlmaxLossStrategyfarthePeiilmiihcCaieBoundsantheRtskforRealValuedLaiiFuncbaniBoundsfortheSimplestModelPesstmlsttcCaseConceptsofCapacityFartheSetsofRedVduedFunct~onsNoncanitructweBoundsonGeneral~iabanforSetsofRealValuedFuncbaniTheMatnIdeaConceptsofCapacityFortheSetofRealValuedFunct~onsBoundsfortheGeneralModelPeii$mtihcCaieTheBasicInequaliBIProofofTheoremBoundsfortheGeneralModelUniversalCaseProofofTheoremBoundsforUntFormRelattveConvergenceProofofTheoremfortheCasep>ProofofTheoremfortheCaseIcpPnorInformat~onforthePL~skMirnm~rauonProbleminSetsofUnboundedLoisFuncboniBoundsontheRiskfarSetsaFUnbaundedNonnegatieFunchonsSampleSelecttonandtheProblemoFOutltersTheMalnResultsoftheTheovofBoundsTheStruchlralRtskMtntmlzahonPnnclpleTheSchemeoftheStructuralRtskMmmmtrattonInducttonPnnctpleIPnnclpleofStructuralRiikMtnimlzabonMtnjrnumDescnpbanLengthandStructuralRiikMtmmtzabanInductivePnnclplesTheIdeaabouttheNatureofRandomPhenomenaStachasbcUlPosedProblemsIStochaittcIIIPosedProblemsRegulanzahonMethodforSolvingStochasticIllPosedProblemsProofsoftheTheoremsProofofTheoremProofofTheoremProofofTheoremConditlanifarCanitstencyoftheMethodsofDenstyEshmationNonparametncEsbmatar~ofDensstyEshmatoriBasedanAppraxmahonsoftheD~stribut~onFunchonbyanEmptncalDlstrtbutlonFunchonTheYarzenEsttmatorsPrqectlonEsttmatorsSpllneEsttmateoftheDensityApproxtmahonbySpl~neioftheOddOrderSpllneEsttmateoftheDensitvApproxtmahonbySpl~neioftheEvenOrderEsttmatorsfortheDtstrlbuttonFunctlonPolygonAppraxmattonofD~stnbuhonFuncaonPrqectlonMethodoftheDensttyEstimatorAsymptoticRateofConvergenceforSmoothDens~vFunctionsProofofTheoremChoosingaVdueofSmoothing(Regulanrabon)ParameterfortheProblemofDens~tyEshmatlonEstlmdtlonoftheRhtloofTwoDensttlesIEsttmahonofCondihonalDens~tieiIEstlmatlanafRattaofTwoDenshesontheLineEst~mhtlonofaCondihondProbabtl~vonaLmeE~tlmnhngtheValuesofFunctlonatCnvenPotntsTheSchemeofMtntmjzjngtheOverallRiskTheMethodofStructuralMlnlmtzatlanoftheOverallR~skBoundsontheUrnformRelativeDeu~htlonofFrequenc~es~nTwoSubsamplesABoundontheUntfarmRelahveDevlatlonofMeansInTwoSubsamplesEshmabanofValuesofanIndrcatarFunctlanInaClassofL~nearDecisionRulesSampleSelect~anfarEstmahngtheValuesofanIndrcatorFuncbanEshmatlonofVduesofaRedFunctlontntheClassofFunctionsLtneartnthemParametersSampleSelecttonforEsttrnahonofValuesofRedValuedFunctlonsLocalAlgonthmiforEstmahngValuesofanIndrcatorFuncbanLocalAlgonthmifarEst~mahngValuesofaRealValuedFunctionTheProblemofFtnngtheBestPointtnaCnvenSetIIChalceoftheMastProbableRepresentattveoftheFsritClaiiChalceoftheBestPamtofalvenSetISupportVectorEstimationofFuuctiourPercepkansandThetrGeneralliat~oniIRosenblauiPerceptranPProofsoftheTheoremsProofofNovtkoffTheoremProofofTheoremMethodofStochashcApproxtmat$anandStgmatdAppraxtmahonofIndrcatorFuncboniMethodofStochasticApproxtmat~onMethodofPatenttalFunctflaniandRadralBassFuncttoniMethodofPotentlaFunct~onstnAsymptottcLearn~ngTheovRaalBasisFunchonMethodThreeTheoremsofOpttmizat~onTheoqFernat'sTheorem()LqrangeMultlpltersRule()KuhnTuckerTheorem()NeuralNetworksTheBackPropqat~onMethodTheBackPropagattonAlgorithmNmalNeWoksFortheRegresslmEst~rnatlonFnoblernRmatkrontheBackqagatlonMethodTheSupportVedmMethodfarEstmahngInd~catmFunctlmsITheOptlmalHypqlaneTheOptimalHypqlmefarNons~parahleSetsTheHadMaqmGenerallrat~onoftheOptimalHyperplaneTheBaslcSolutlonSofiMarglnGenerallrahmStatisticalPropettlesoftheOphmalHyperplaneProofsoftheTheorernshoofofTheomnhoofofTheomnLeaveOneOutProcedureProofofTheomandTheoremProofofTheomProofofTheomnTheIdeaoftheSupportVectorMachlneGenaallratlonInHlghDimensionalSpaceHllbaiSchmtdtTheormdMacerTheorrmConsiructlngSVMachinesOneMoreApproachtotheSuppaltVecbrMethodMnunlzlngtheNwnberofSuppartVedmsGenaallzatlonfortheNmreparableCaseLlnearOptun~zabmMethodforSVMachmesSelectionofSVMachmeUslngBoundsExamplesofSVMachinesforPaitemRecognttlonPolynmlalSuppoitVectorMachmeaRadlalBaelsFunctionSVMach~nerTwo~LayaNeuralSVMach~neeSupportVectorMethodforTransdud~velnfaenceMult~classClass~f~cahmRemarksonGmeral~zat~onoftheSVMethodIITheSuppottVectorMethodforEstunahngRealValuedFunchonsIeInsens~t~veLossFundlonsLossA~ndtonsforRoh~rstEst~matmsMmm~zmgtheRlskwltheInsensltlveLossFunchonsMmirnlzlngtheR~rkforaFlredElementoftheShcturellTheBasicSalut~onsllSolut~onfortheHubaLossFunchonIISVMach~nesforFundlonEstlrnatlonMmunlzlngtheRiskForaFxedElementoftheShctureinFeabrfSpacellTheBaslcSolutionsmFeabreSpaceSolutionforHubaLossFundlonnFeab~reSpacellLlnearOptunlzahonMethodMulhKmelDecampas~t~anaffunchansIConstrudlngKernelsforEshrnat~onofRealValuedFund~onsKernelsGeneratrngExpanslononPolynm~alsConstructingMultidunens~onalKernelsKmelsGeneratingSplinesSpllneofOrdadwlthaFmteNumbaofKnobKanelsGmaatlngSpllneswlthanlnfinlteNumberofKnotsllB,SpllneApproxirnahonsB,Splmesw!fianInfnlleNumberoFKnotsIIKanelsrJenaatlngFourierExpansionsKanelefarRegulanzedFour~aExpms~onsTheSuppaltVedarANOVADecompoa~t~on(SVAD)forFunchmApprox~rni~onandRegress~onEstlrnatlonSVMethodfarSolvingLinearOpemtorEquahoneTheSVMethodIRegulmationbyChoosmgParmeiersofe,InsenslhvityIISVMethodofDens!$EstimationISpllneApproxlrnailonofaDenrltyllApproxlmatlonofaDenrltyw~thGauenanMlxiureIIEsimahonofCond~honalProbab~l~tyandCond~i~onalDene~tyFuncha~sIIIIIEstimahonofCondlhmalhobabllltyFund~msIIIIEstimahonofCond~hmalDens,Fund~onsIConned~onsBetweentheSVMethodandSpaneFunchonApprax~rmt~onllReproducingKemelsH~lbettSpacesModlFledSpaneApproxlrnatlonand~tsRelatlontoSVMachmesSVMachinesforPattanRecopt~onTheQuadraticOpt~rnlzat~onPmblemIIterat~vehocedwefarSpec~fy~ngSuppdVedorsMethodsForSolvlngtheReducedOptm~zat~mhblemDlg~tRecagnlt~onhoblemTheUSPostalSenrlceDatabasePerlmancefortheUSPostalSavlceDatabaseSomeImporiantDetallsComparisonofPafmnceoftheSVMachlnewithGaussianKemeltotheGausslanRBFNetworkTheBestResultsForUSPostalSmrlceDatabaseTangentDistanceDlg~tRecagnlt~onhoblemTheNISTDatabasePerlmanceforNISTDatabaseFuttherImprovementTheBestResultsforNISTDatabaseFubmRaclngOneMoreOppn~$TheTrmsduct~veInfacnceSVMachlnesforFunctlmApproxunahons,RegesslonEstlmatlon,andSlgnalProcessingTheModelSelectionhoblemIFundlmalforModelSelectlonBasedontheVCBoundClarr~calFunchmaleExpamentalCampar~ronofModelSelechmMethodsTheProblemofFeatureSeledlonHasNoGenaalSalubonStrudureontheSetofRegulaniedLinearFund~onsTheLCweMethodTheMethodofEffectweNumberofParmetasTheMethodofEffectiveVCDlmenrlonExpamenisonMeaiunngtheEffedlveVCDlmenr~mFundlmApproxlmailonUalngtheSVMethodWhyDoestheValueofeContmltheNumbaofSupportVectorsSVMachineforRegress~onEshmatlonRoblernofDataSmaothlngEst~mat~onofLmearRegress~onF~rnchonsEshmatlonofNonlmearRegreeelonFund~onsSVMethodforSolvmgthePositronEmlsslmTomogaphy(PET)ProblemDescrlpbonofPETProblemofSolvlngtheRadonEquatlonGenaallrat~onoftheResidualFnncpleofSolvmgPETRoblmsTheClass~calMethodsofSalvlngthePEThblmTheSVMethodforSolvmgthePETRoblmRmakAbouttheSVMethodIllStatirticalFmdatianofLeamhgTheoryNecessaryandSufficlentCondlhonsforUnlfomConvergenceofFt'equenclestothelrPrnbabll~besUnlfmConvsgtllceofkrequenc~estothe~rPmbabd~hesBaelcLemmaEntropyoftheSetofEventsAsymptot~cRopert~esoftheEntropyNecessaryandSufficlentCmdlhmsofUnlfmConvergencePmofofSufflclencyNecessaryandSufficlentCmdlhmsofUnlfmConvergencePmofofNecesslbyNecessaryandSufflclentCondlbmsContlnuabonofProvlngNecesslkjNecessaryandSufficlentCondlhonsforUnlfomConvergenceofMeanstothe~rExpectatlonseEntmpyIIIRoofoftheEx~stenceoftheLmltRoofoftheConvagenceoftheSequtnceTheQuas~mbeeExtens~onofaSetInAulllalyLmaNecessaryandSufflclentCmdlt~oniforTlnlfomCmuagmceTheRoofofpTecessliyNecessaryandSuff~clentCond~honsforUnlfarmConvagmceThehoofofSufficiencyGaollanesErarnThemmLNecessaryandSuff~c~entCondlhonsforTJn~fomOneSldedConvergtnceofMemstoThe~rExpedat~onsInirodud~onMaxmurnVolumeSechmsTheTheoremontheAverageL

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

评分:

/49

VIP

意见
反馈

免费
邮箱